
Summary

This paper presents a strategy for dynamically monitoring digital controllers in the laboratory

for susceptibility to electromagnetic disturbances that compromise control integrity. The integrity

of digital control systems operating in harsh electromagnetic environments can be compromised by

upsets caused by induced transient electrical signals. Digital system upset is a functional error

mode that involves no component damage, can occur simultaneously in all channels of a redundant

control computer, and is software dependent. The motivation for this work is the need to develop

tools and techniques that can be used in the laboratory to validate and/or certify critical aircraft

controllers operating in electromagnetically adverse environments that result from lightning, high -

intensity radiated �elds (HIRF), and nuclear electromagnetic pulses (NEMP).

The detection strategy presented in this paper provides dynamic monitoring of a given control

computer for degraded functional integrity resulting from redundancy management errors, control

calculation errors, and control correctness/e�ectiveness errors. In particular, this paper discusses

the use of Kalman �ltering, data fusion, and statistical decision theory in monitoring a given digital

controller for control calculation errors. The control laws calculated in the digital controller are

modeled as linear (or linearized) recursive state equations. This model is used in the design of Kalman

�lters that estimate the correct control calculations. These estimates of the correct calculations are

compared with the calculations obtained by the control computer. Residuals are generated and

used in probabilistic decision rules to determine if the calculations performed by the control unit

are faulty. A decision is made for the command calculation of each control loop, and these local

decisions are optimally weighted and fused into a decision on the integrity of control calculations. A

simple example is included to illustrate the concept.

Introduction

Future advanced aircraft will require systems for stability augmentation as well as guidance and

control that will be critical to the ight of the aircraft. The trend in avionics technology is the

implementation of control laws on digital computers that are interfaced to the sensors and control

surface actuators of the aircraft. Since these control systems will be ight critical, the problem of

verifying the integrity of the control computer in adverse, as well as nominal, operating environments

becomes a key issue in the development and certi�cation of a critical control system.

An operating environment of particular concern results from the presence of electromagnetic

�elds caused by sources such as lightning, high-intensity radiated �elds (HIRF), and nuclear

electromagnetic pulses (NEMP). Electromagnetic �elds may cause analog electrical transients to be

induced on the aircraft wiring, and these signals can propagate to the onboard electronic equipment

despite shielding and protective devices such as �lters and surge suppressors. Digital computer

systems have two types of e�ects that can be caused by transient electrical signals. The �rst is

component damage that requires repair or replacement of the equipment. The second e�ect to a

digital system is characterized by functional error modes, collectively known as upset, which involve

no component damage.

Functional error modes of a fault-tolerant controller that can be termed as upset in the system

are characterized by (1) faulty input/output (I/O) processing and command calculations that

result in o�-nominal system behavior or degraded system performance, and (2) faulty redundancy

management decisions that result in degraded system performance and/or reliability. In the case of

upset, normal operation can be restored to the system by corrective action such as resetting/reloading

the software or by an internal recovery mechanism, such as an automatic rollback to a system state

prior to the disturbance. The subject of e�ective and reliable internal upset recovery mechanisms is

another current topic for research. The usual features of fault-tolerant systems such as redundant

input and output checking and selection, surge suppression devices and �lters, and a redundant

microprocessor architecture with voting may not be su�cient to ensure correct operation in an



electromagnetically adverse operating environment. Surge suppression devices and �lters are e�ective

for large-amplitude, high-frequency transients. However, low-amplitude signals at frequencies near

the clock speeds of digital circuitry can be generated by electromagnetic �elds and propagate to

electronic equipment onboard an aircraft. In addition, redundancy protects against single-mode

failures that occur in one channel of the system, but it does not protect against the potential

common-mode failure (i.e., upset) of all channels in the redundant system as a result of transient

signals induced by a single electromagnetic disturbance.

To date, no comprehensive guidelines or criteria exist for detecting upset in fault-tolerant

digital control computers, designing reliable internal upset recovery mechanisms, performing tests or

analyses on digital controllers to verify control integrity, or evaluating upset susceptibility /reliability

in electromagnetically adverse operating environments. In order to assess a digital control computer

for upset susceptibility, the issue of upset detection must be addressed. Real-time considerations

for upset detection would reduce post data processing requirements during validation/certi�cation

testing. Therefore, the objective of this research is to develop an upset detection methodology

for real-time laboratory implementation. During laboratory tests, a given digital computer-based

control system will be evaluated for upset susceptibility when subjected to analog transient electrical

signals like those that would be induced by lightning, HIRF, or NEMP.

The objective of this paper is to present an upset detection strategy for monitoring a given

fault-tolerant controller for degraded control integrity resulting from redundancy management

errors, control law calculation errors, and control correctness/e�ectiveness errors. Kalman �ltering,

statistical decision theory, and data fusion are used in the detection of redundancy management

errors and control calculation errors. Analytical redundancy of the control laws provides a reference

of the correct control command for the given dynamic mode of the plant. This reference command

and an actuator model are used in the control correctness/e�ectiveness decision. In particular, this

paper focuses on the use of Kalman �ltering, data fusion, and decision theory in monitoring a digital

controller for control law calculation errors.

An upset test methodology for control computers was discussed in reference 1. However, this

methodology relies on postprocessing of data collected during each test. Since the detection strategy

presented in this paper is for eventual real-time implementation, it will eliminate the need to store

data during tests in which upset does not occur. In addition, the strategy provides an indication

of where errors occurred for diagnostic purposes so that any desired postprocessing of the data is

simpli�ed.

Other works in failure detection methods include the detection of sensor failures in turbofan

engines (ref. 2) and the detection of failures in aircraft actuators and control surfaces (ref. 3). In

reference 2, analytical redundancy, Kalman �ltering, and decision theory were used to detect sensor

failures in an F-100 turbofan engine. Out-of-range or large bias errors that occurred instantaneously

were detected by comparing measured sensor values with those of an analytical model, taking the

absolute value, and comparing this residual to a threshold. Small bias errors and drift in sensor

measurements were detected using multiple-hypothesis testing methods in which each hypothesis

corresponded to a particular sensor failure. Once a sensor failure was detected, the elements of an

interface switch matrix were changed so that a Kalman �lter estimate of the sensor value replaced

the measurement in the input vector used in the control laws. The methodology of reference 2 was

demonstrated on a hybrid real-time simulation of the F-100 engine as well as on a full-scale F-100

engine with good results. However, this methodology was not designed to detect failures in systems

with physically redundant sensors and computers and, therefore, does not use data fusion methods.

In reference 3, analytical redundancy and decision theory were used to detect actuator failures

and control surface failures in aircraft. The design methodology consisted of two failure detection

and identi�cation (FDI) algorithms or subsystems|one for actuator failures and one for control

surface failures. In the actuator FDI subsystem, an analytical model was implemented to generate
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a prediction of the dynamic behavior of the actuators. This prediction was compared with

measurements taken from the actuators, and a residual was generated and used in a decision

process. The control surface FDI subsystem was designed in a similar fashion. The methodology

of reference 3 was demonstrated using a six-degree-of-freedom nonlinear simulation of a modi�ed

Boeing 737 airplane with good results. This methodology was not designed to detect failures in

physically redundant systems and did not use data fusion techniques.

A formulation of the problem considered in this paper follows a list of symbols used in the

notation. The monitoring strategy is presented in the next section and focuses on the detection

of control law calculation errors in redundant processors. An example is presented in which the

calculation error-detection scheme is demonstrated on a hypothetical quad-redundant processing

system. The �nal section of this paper contains some remarks on the detection strategy.

Symbols

Bold type denotes vector and matrix variables. A dot over a symbol indicates a derivative with

respect to time.

A plant system matrix

B plant control input matrix

C

f

system matrix for  sensors measuring parameter f

Df plant state measurement matrix

d(k) global upset decision that results from fusion of dc(k), de(k), and dr(k)

d
i
c(k) decision vector for control law calculations of processor i

dc(k) decision scalar for control law calculations that result from fusion of

elements in dic(k)

de(k) decision vector for control correctness/e�ectiveness

de(k) decision scalar for control correctness/e�ectiveness that results from fusion

of elements in de(k)

d
i
in
(k) decision vector for input selection process of processor i

dout(k) decision vector for output selection process of controller

dr(k) decision scalar for input/output redundancy management that results from

fusion of elements in di
in
(k) and dout(k)

E
i
f input-selection state transition matrix for parameter f of processor i

F
i
c control law calculation state transition matrix

G
i
c input matrix for control law calculation state vector of processor i

H
i
c control law calculation measurement matrix

I identity matrix

J
i input-selection state measurement matrix

K
i
c(k) Kalman �lter gain matrix for state estimate for control law

k discrete time variable

Lj(k) output-selection state transition matrix for jth control law calculation

M output-selection measurement matrix
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P actuator measurement matrix

Pi
c(kjk�1) predicted error covariance matrix for estimate of control law calculation of

processor i

Pi
c(kjk) updated error covariance matrix for estimate of control law calculation of

processor i

Qi
c covariance matrix for process noise of control law calculation of processor i

Ri
c covariance matrix for measurement noise of control law calculation of

processor i

ric(k) residual vector of decision rule for detecting control law calculation errors

in processor i

Sf(k) discretized redundant plant sensor vectors for parameter f

Sf(t) continuous redundant plant sensor vectors for parameter f

s

f
(t) -redundant sensor measurement of plant parameter f

T actuator state transition matrix

u(t) control input to plant from actuators

vic(k) measurement noise for control law calculation of processor i

vf (k) measurement noise for redundant sensors of plant parameter f

vi
in
(k) measurement noise for selected input vector of processor i

vout(k) measurement noise for selected output vector of controller

vu(k) measurement noise for actuators

wi
c(k) process noise for control law calculation of processor i

w

f
(k) process noise for -redundant sensors measuring plant parameter f

wi
inf

(k) process noise for selection of input parameter f of processor i

woutj
(k) process noise for selection of control output parameter j

wu(k) process noise for actuators

xp(t) plant state vector

xic(k) control law calculation state vector of processor i

bxic(kjk�1) predicted state estimate of control law calculation state vector of

processor i

bxic(kjk) updated state estimate of control law calculation state vector of processor i

Yi
in
(k) selected input vector for processor i

Yout(k) selected control output vector of controller

Yout(t) continuous form of selected control output vector

yi
inf

(k) selected value of input parameter f for processor i

youtj(k) selected value of control law calculation j

�j noise matrix for output selection process of controller
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�ic process noise matrix for control law calculation of processor i

� selected-output vector compression matrix

�

f

process noise matrix for -redundant sensors of plant parameter f

� process noise matrix for actuators

� process noise matrix for plant

 i
f

noise matrix for input selection process of plant parameter f of processor i


 plant state measurement matrix

Special notation:

H0c hypothesis that control law calculation in controller is correct

H0ic hypothesis that control law calculations of processor i are correct

H0icj hypothesis that control law calculation j of processor i is correct

H1c hypothesis that calculation of control laws in controller is incorrect

H1ic hypothesis that control law calculations of processor i are incorrect

H1icj hypothesis that control law calculation j of processor i is incorrect

ln natural logarithm

P (D0icj jH1icj) probability of deciding that control law calculation j of processor i is

correct given that it is incorrect

P (D1icjjH0icj) probability of deciding that control law calculation j of processor i is

incorrect given that it is correct

P (H0cj) a priori probability that hypothesis H0icj is correct for all processors

Pfaicj probability of a false alarm for control law calculation j of processor i

Pmi
cj

probability of a missed detection for control law calculation j of processor i

PFc probability of a false alarm for control law calculations of controller

PF i
c probability of a false alarm for control law calculations of processor i

PMc probability of a missed detection for control law calculations of controller

PM i
c probability of missed detection for control law calculations of processor i

R set of real numbers

T matrix transpose

2 is an element of

�icj mean of innovations sequence for control law calculation j of processor i

Subscripts:

c control law calculation variable

e command correctness/e�ectiveness variable

f sensor variable for plant parameter f

in input variable
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out output variable

p plant variable

r input/output redundancy management variable

u actuator variable

Subsubscripts:

f index for plant parameter

j index for control law calculations

Superscripts:

i index for redundant processors

m number of plant parameters being measured

N dimension of actuator output state space

n dimension of control law calculation state space

p dimension of plant state space

 index for redundant sensors

�f number of redundant sensors measuring plant parameter f

� dimension of control output space

� number of redundant processors

�1 matrix inverse

Abbreviations:

A/D analog to digital

calc. calculation

cmd. command

cntl. control

cond. conditioning

decis. decision

e�ect. e�ectiveness

D/A digital to analog

EM electromagnetic

FDI failure detection and identi�cation

HIRF high-intensity radiated �elds

I/O input/output

meas. measurement

mgt. management

NEMP nuclear electromagnetic pulse

�P1, �P2, : : :, �P� microprocessors
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ROC Receiver Operating Characteristics

redun. redundancy

S/H sample and hold

sig. signal

Problem Formulation

The fault-tolerant controller to be evaluated for upset susceptibility is interfaced in the laboratory

to a simulation of the plant, redundant sensors, and actuators so that closed-loop dynamics are

represented during testing. A block diagram of the laboratory setup is shown in �gure 1. The

controller with � processors (or microprocessors (�P), designated as �P1 to �P�) is subjected to

disturbances like those that can occur in an electromagnetically harsh environment. In the case of

lightning, transient signals that would be induced on internal wiring are generated. In the case of

HIRF, electromagnetic (EM) �elds that could occur from radars or high-power radio transmitters

are generated. The control system is dynamically monitored for upset in real-time testing. In the

event of the occurrence of upset during testing, the detection methodology will provide a framework

for diagnosis of the upset in the given digital controller.

. . .

. . .

Fault-tolerant controller Interface

Dynamic simulation
of plant, actuators, &
 redundant sensors

Control system

Generator
EM field (HIRF)

or
transient signal

(lightning)

           Real-time
     upset monitor for
critical digital controllers

µP1 µP2 µPσ

Figure 1. Laboratory con�guration for upset evaluation of digital controllers.

Consider the block diagram shown in �gure 2 of a given control system consisting of the plant,

redundant sensors, actuators, and fault-tolerant control computer. Input/output conversions and

signal conditioning between the plant and controller are represented by the indicated blocks. Input

processing functions including analog-to-digital (A/D) conversion, frequency-to-digital conversion,

surge suppressors for protection against high-level transient signals, and �lters to reduce high-

frequency noise have been represented by the A/D and signal conditioning block. Output processing

functions such as signal conditioning and digital-to-analog (D/A) conversion are represented by the

D/A and signal conditioning block.

The given fault-tolerant controller is modeled to consist of three basic blocks. The input se-

lection and redundancy management block performs rate and/or range checks of the data values

and generates the input data vector for each of the microprocessors. The redundant microproces-

sors calculate the control commands based on the input vector for each processor. Redundancy in

the control computer protects against single-mode failure of components during normal operation.
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S f (k)

Actuators Plant
Redundant

sensors

Redundant
microprocessors

Input
selection &
redundancy
management

Output
selection &
redundancy
management

Fault-tolerant controller

A/D &
sig. cond.

D/A &
sig. cond.

S f (t)xp(t)

Y in
i (k)Yout (k)

Yout(t)

xci (k)

u (t)

Figure 2. Control system with redundant sensors and microprocessors.

The output selection and redundancy management block performs rate and/or range checks on the

calculated commands from each processor and determines via voting, or some other scheme, the

command to be output from the controller for each control loop.

The linear model in the following discussion is proposed for the given control system of �gure 2.

The number of redundant sensors for the measurement of the fth plant parameter is given as �f ,

and the number of di�erent plant measurements is given by m. The number of redundant processors

is designated by �. Each processor performs n calculations. The number of control outputs is

given by �. The control action in the plant is e�ected by N actuator signals. In equations (1)

through (6), state variables, sensor values, and input/output variables are designated by x, s, and y,

respectively. Control inputs are designated by u. System noise processes are designated by w.

Variable superscripts index replicates of redundant system elements. Subscripts characteri ze the

variables, and subsubscripts index elements of vector variables. Bold type denotes vector and matrix

variables.

In the linear model the plant state vector is given as

_xp(t) = Axp(t) +Bu(t) + �wp(t) (xp(t) 2 R
p) (1)

with sensors

Sf(t) =

�
s1
f
(t) s2

f
(t) : : : s

�f

f
(t)

�
T

(Sf(t) 2 R
�f)

where

s


f
(t) = C

f
xp(t) + �



f
w


f
(t)

�
 = 1; 2; : : : ; �f ; f = 1; 2; : : : ; m; s

f
(t) 2 R

�
(2)

For input selection and redundancy management,

Y
i

in
(k) = [yi

in1
(k) yi

in2
(k) : : : yi

inm
(k)]T (Yi

in
(k) 2 Rm)

with

yi
inf

(k) = E
i

f
(k) Sf(k) +  i

f
w
i

inf
(k)

�
i = 1; 2; : : : ; �; yi

inf
(k) 2 R;Sf (k) 2 R

�f

�
(3)

where

Sf(k) = [s1
f
(k) s2

f
(k) : : : s

�f

f
(k)]T (f = 1; 2; : : : ; m)

For control law calculations of redundant controllers,

x
i

c
(k+ 1) = F

i

c
x
i

c
(k) +Gi

c
Y
i

in
(k) + �i

c
w
i

c
(k) (i = 1; 2; : : : ; �;xi

c
(k) 2 Rn) (4)
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where

x
i
c(k) = [xic1(k) x

i
c2
(k) : : : xicn(k)]

T (xicj(k) 2 R)

For output processing and redundancy management,

Yout(k) = �[yout1(k) yout2(k) : : : youtn(k)]
T (Yout(k) 2 R� = +1)

youtj(k) = Lj(k) xcj(k) + �j woutj
(k) (j = 1; 2; : : : ; n; youtj(k) 2 R) (5)

where

xcj = [x1cj(k) x
2

cj
(k) : : : x�cj(k)]

T (xcj(k) 2 R�)

For the actuators,

u(t) = T Yout(t) + � wu(t) (u(t) 2 RN) (6)

where

Yout(t) = [Yout1(t) Yout2(t) : : : Yout�(t)]
T (Yout(t) 2 R�)

Equations (1){(6) represent a hybrid model of continuous-time and discrete-time components .

Equation (1) is the continuous-time state equation for the plant. Matrix A is the plant system

matrix, u(t) is the control input, and wp(t) reects noise and/or modeling errors. Equation (2) is

the continuous-time sensor model for the redundant sensors with wi
sf
(t) representing the sensor noise.

Equation (3) is the discrete-time model for the selection and management of redundant sensor inputs

Spf(k) for the fth plant parameter measurement with the noise term w
i
inf

(k) representing modeling

error. Matrix Ei
f (k) is time varying to represent selection, rejection, voting, or fusion of redundant

sensor measurements. If the given system has an input data selection process without data fusion,

the elements of Ei
f(k) will be 0 or 1 and may be based on heuristics, such as the result of range and/or

rate checks on the sensor measurements. In systems that fuse sensor measurements into a single

value, matrix Ei
f(k) would represent the input data fusion process. Equation (4) is the discrete-

time state equation for the calculation vector of the ith processor, and matrix Fic is the transition

matrix. Matrix Gi
c is the measurement matrix for measurement vector Yi

in
(k) of the ith processor.

Term w
i
c(k) reects noise and/or modeling errors associated with the calculation vector from the

ith processor. Equation (5) is the discrete-time model for the selection and management of the

redundant calculations with modeling error accounted for in the noise term woutj
(k). Matrix Lj(k)

is time varying to represent selection or fusion of calculations for the output youtj(k) of the jth

calculation during operation of the system. If the given system has a voting strategy for calculations,

the elements of Lj(k) will be 0 or 1 and may be based on heuristics associated with the voting

strategy. In systems that combine calculations into one output, Lj(k) would represent the calculation

fusion process. Vector Yout(k) represents the output control calculations. Matrix � collapses the

calculation vector into the output command vector. Equation (6) is the continuous-time actuator

model. The actuators receive the command vector Yout(t) and a�ect the dynamics of the plant via

u(t). The term wu(t) reects noise and/or modeling errors.

Monitoring Strategy for Fault-Tolerant Control System

In order to detect redundancy management errors, control calculation errors, and control ef-

fectiveness errors in the fault-tolerant controller, measurements of the control system of �gure 2
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Redundant
microprocessors

Input
selection &
redundancy
management

Output
selection &
redundancy
management

Fault-tolerant controller

Redundant
sensors,
A/D,  &

sig. cond.

D/A, sig.
cond., &
actuators

Upset  monitor for digital controllers

+

S/H &
A/D

+++++

S/H &
A/D

P TM

Yout (k)u (t) x ci (k) Yin
i (k) S f (k)

xp(t)

xp(k)

p(k)vvf (k)vin
i (k)vci (k)vout (k)u(k)v

u(k)

p (k)zz f (k)z in (k)iz ci (k)zout (k)u (k)z

H ci J i Df

Figure 3. Fault-tolerant controller measurements.

must be taken by the monitor. These measurements are indicated in �gure 3, and their equations

are presented as follows.

The measurement of the plant state is given by

zp(k) = 
 xp(k) + vp(k) (zp(k) 2 Rp) (7)

The measurement of sensor outputs is given by

zf(k) = Df Sf(k) + vf(k)
�
f = 1; 2; : : : ; m; zf (k) 2 R�f

�
(8)

The measurement of input vectors is given by

z
i
in(k) = J

i
Y
i
in(k) + v

i
in(k) (ziin(k) 2 Rm) (9)

The measurement of calculated commands is given by

z
i
c(k) = H

i
c x

i
c(k) + v

i
c(k) (j = 1; 2; : : : ; n; zic(k) 2 Rn) (10)

The measurement of the output command vector is given by

zout(k) =M Yout(k) + vout(k) (zout(k) 2 R�) (11)

and the measurement of the actuator is given by

zu(k) = P u(k) + vu(k) (zu(k) 2 RN) (12)

In equations (7){(12), 
, Df , J
i, Hi

c, M, and P are the measurement matrices. The terms

vp(k), vf (k), v
i
in
(k), vic(k), vout(k), and vu(k) represent measurement noise. All noise processes in

equations (1){(12) are assumed to be independent, white, and Gaussian.

10



The fault-tolerant control computer is monitored for errors in redundancy management and

control command calculations, as well as for command correctness/e�ectiveness given the dynamic

mode of the plant. In the context of this mathematical formulation, upset is de�ned as a change in

any of the matrices Ei
f
(k) of equation (3), Fi

c and Gi
c of equation (4), and Lj(k) of equation (5)

that causes a reduction in e�ectiveness and/or reliability of the control system. A concept for upset

detection in digital control computers is presented in �gure 4. The upset detection strategy has

three modules to monitor for input/output redundancy management errors, control law calculation

errors, and control command errors. The distinction between these last two types of errors should

be noted. Control calculation errors result when basic mathematical operations are performed

incorrectly by the processor. Control command errors result when incorrect input parameters are

used in calculations or when rate/range checks are performed incorrectly on the calculated result.

A basic description of the three modules is given, but the paper focuses on the detection of control

law calculation errors.

Control cmd.
error detection

Fault-
tolerant

controller

Input & output
redundancy
management

error detection

Control law calc.
error detection

I/O
redun. mgt.
error data

fusion

Cntl. calc.
error data

fusion

Cntl. effect.
error data

fusion

I/O
redun. mgt.

     error
  decision

Cntl. calc.
error

decision

Cntl. effect.
error

decision

Global
error

decision
fusion

Upset
decision

dc(k)

dr(k)

de(k)

d(k)

Upset monitor for critical digital controllers
z f (k)

z in (k)i

z ci (k)

zout (k)

z in (k)i

z ci (k)

zout (k)

d in(k)i

dout (k)

d ci (k)

de (k)

p(k)z

u (k)z

Figure 4. Upset detection concept for digital control systems.

Redundancy management processes in the control computer to be monitored are the input-

parameter selection process, the output-command selection process, and the management of redun-

dant resources. An example of a redundancy management error is the computer deciding that one of

the redundant sensors is faulty and ignoring its measurements when, in fact, it is operating correctly.

Since eliminating an unfaulted sensor reduces the redundancy and overall reliability of the system,

this redundancy management error would constitute an upset. The redundancy management moni-

tor detects incorrect changes in the matrices Ei
f
(k) and Lj(k) of equations (3) and (5), respectively.

Elements of these matrices are compared with the input/output selection codes of the controller to

determine if the controller has eliminated resources that are not faulty. Input/output selection codes

are binary words that are generated by the controller to reect the choices made by the input/output

selection logic.

Inputs to the input selection error detection portion of this monitor are measurements of the

sensor outputs (zf(k)) and measurements of the selected input vector for each channel (zi
in
(k)). If

an error is not detected in the input selection process, then each decision variable in the vector di
in
(k)
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will maintain its nominal value of �1. If an error is detected in the input selection process,

the corresponding element value of di
in
(k) becomes unity. Inputs to the output selection error

detection part of this monitor are measurements of the calculated control commands (zic(k)) and

the selected output commands (zout(k)). If an error is not detected in the output selection process,

the decision variables in the vector dout(k) will maintain a nominal value of �1. If an error is

detected in the output selection process, the appropriate element value of dout(k) becomes unity.

Individual decisions in di
in
(k) and dout(k) are combined or fused into a decision scalar for redundancy

management errors (dr(k)).

The control law calculations of each processor are also monitored for errors. This monitoring is

done dynamically as the calculations are made. Changes in the matrices Fi
c and G

i
c of equation (4)

are detected by monitoring for errors in the calculated control commands. Inputs to the control law

calculation error detector are measurements of the selected input vector for each channel (zi
in
(k)) and

the calculation vector of each channel (zic(k)). Individual decisions (d
i
c(k)) are made for the control

law calculations of each processor, and these decisions are fused into a scalar error decision (dc(k))

for the control law calculations of the controller.

Analytical redundancy of the control laws provides a reference of the correct control command

for the given dynamic mode of the plant. Inputs to the analytical model of the control laws are

measurements of the plant state (zp(k)). This analytical reference and the actuator measurement

zu(k)) are used in a decision process to determine if the calculated command output vector (Yout(k))

is correct and is, therefore, e�ective in regulating the plant under a given dynamic situation. It should

be noted that this is not an evaluation of the control law design. The control laws are assumed to be

designed appropriately, to be validated prior to this assessment of the controller, and to be e�ective

in controlling the plant. Any lack of e�ectiveness in the control commands that are output by the

controller during this assessment will, therefore, be the result of incorrectness of the commands

that could be attributed to incorrectly selected input values or faulty rate/range checks. Thus,

considerations such as range and rate limitations of the actuators will be inherent in this evaluation

of the e�ectiveness of the control output. If an error in the control command is not detected, each

of the decision variables in the vector de(k) will maintain its nominal value of �1. If an error in

control correctness is detected, the appropriate value of de(k) becomes unity. Individual control

error decisions are made for each control loop, and these decisions are combined or fused into one

scalar error decision (de(k)) for the correctness/e�ectiveness of the control output vector.

The decisions corresponding to redundancy management errors, control law calculation errors,

and control correctness/e�ectiveness errors are fused into one global upset decision (d(k)), which

has a nominal value of �1 and a value of unity for the upset decision. This global fusion process

may be a logical OR rule, or it may provide weightings corresponding to the relative costs of the

three error processes. In tests during which upset occurs and is signaled by the unity value of d(k),

the redundancy management error decisions di
in
(k) and dout(k), the control law calculation error

decisions dic(k), and the control correctness/e�ectiveness error decisions de(k) are all stored in the

monitor as a diagnostic aid for posttesting data analysis. A strategy for monitoring the control

computer for erroneous control law calculations is now presented.

Monitor for Control Law Calculation Error

The approach for monitoring control law calculation errors in a controller with a single processor

is shown in �gure 5. Since the controller has a single processor, the redundancy index i is unity. The

control law calculations are represented as a linear or lineari zed recursive state equation with state

vector xic(k). A Kalman �lter is used to generate the estimate vector bx
i
c(k) of the correct state for

the calculations based on measurements zi
in
(k) of the selected input vector and measurements zic(k)

of the control law calculation state vector. The estimate bx
i
c(k) is compared with the measurement

z
i
c(k) of the calculation vector to generate a residual vector ric(k). A statistical decision rule is then

12
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Figure 5. Strategy for monitoring control law calculation errors in digital controllers with a single processor.

applied to each element of the residual vector, and a decision di
c(k) is made regarding the correctness

of the calculations, given the selected input vector. Decisions for the individual calculations are then

fused into a single decision (dic(k)) for the correctness of the calculations.

The approach shown in �gure 5 is readily extended to dynamically monitor processor calculations

in redundant systems and is illustrated in �gure 6. The global decision dc(k) on whether calculation

errors have occurred is based on the fusion of the scalar calculation-error decisions d
i
c(k) for

� processors. The scalar calculation-error decision d
i
c(k) for each processor is generated by the

process described in �gure 5. Previous work (ref. 4) compared two distributed detection strategies,

each using a di�erent type of data fusion. One strategy involved a single global decision based on the

fusion of local estimates, and the other strategy involved the fusion of local decisions into a single

global decision. The performance of a statistical decision process is determined by the Receiver

Operating Characteristics (ROC) curve which is a plot of the probability of detection versus the

probability of false alarm, with the decision threshold as the varying parameter. The ROC curve

of the strategy with decision fusion was shown to be more desirable for two cases. Therefore, the

strategy of �gure 6 uses fusion of local decisions. In order to illustrate the strategy for dynamically

monitoring the calculations of redundant processors, a simple example is presented.
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Figure 6. Strategy for monitoring control law calculation errors in digital controllers with redundant processors.
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Example for Quad-Redundant Processor

Consider a system of four redundant processing channels. Let the model of the calculations to be

made by the four channels be given by third-order linear recursive equations. Thus, for a processor

calculation we have

xic(k + 1) = Fi
c x

i
c(k) +Gi

c Y
i
in(k) + �ic w

i
c(k) (i = 1; 2; 3; 4) (13)

with a measurement

zic(k) = Hi
c x

i
c(k) + vic(k) (i = 1; 2; 3; 4) (14)

where

F
1

c
=

2
64
0:75 1:0 0:5

0 0:3 1:0

0 0 0:5

3
75 F

2

c
=

2
64
0:8 0:9 0:6

0 0:4 0:9

0 0 0:5

3
75 F

3

c
=

2
64
0:7 0:9 0:7

0 0:3 0:8

0 0 0:4

3
75 F

4

c
=

2
64
0:82 0:95 0:4

0 0:35 0:9

0 0 0:3

3
75

G
1

c
=

2
64
1 0 1 1

1 1 0 1

0 1 1 1

3
75 G

2

c
=

2
64

1 0 0:9 1

0:9 1 0 1

0 0:9 1 0:9

3
75 G

3

c
=

2
64
0:9 0 0:8 1

0:9 1 0 0:9

0 0:8 1 0:8

3
75 G

4

c
=

2
64
0:8 0 1 0:9

0:8 1 0 0:8

0 0:9 1 0:8

3
75

�1
c
=

2
64
0:4 0 0

0 0:5 0

0 0 0:3

3
75 �2

c
=

2
64
0:3 0 0

0 0:4 0

0 0 0:5

3
75 �3

c
=

2
64
0:5 0 0

0 0:3 0

0 0 0:4

3
75 �4

c
=

2
64
0:3 0 0

0 0:5 0

0 0 0:4

3
75

H
1

c
=

2
64
1 0 0

0 1 0

0 0 1

3
75 H

2

c
=

2
64
1 0 0

0 1 0

0 0 1

3
75 H

3

c
=

2
64
1 0 0

0 1 0

0 0 1

3
75 H

4

c
=

2
64
1 0 0

0 1 0

0 0 1

3
75

The above matrices have no physical signi�cance and were selected to ensure stability and observabil-

ity. The calculations from the ith processor are represented by state vector xic(k) ; the corresponding

state transition matrix is given by Fi
c. The input to each channel is Yi

in
(k) with input matrix Gi

c.

The form of the input Yi
in
(k) is

Yi
in(k) = [yin

i
(k)] = [sin(2:4k) cos(2:4k) sin(1:4k) cos(1:4k)] (i = 1; 2; 3; 4)

The process noise for each channel is represented by zero-mean white Gaussian noise wi
c(k) and noise

matrix �ic(k). The measurement matrix for each channel is Hi
c, and the zero-mean white Gaussian

measurement noise is vic(k). The assumption is made that wi
c(k) and vic(k) are independent with

covariances Qi
c and Ri

c, respectively. For this example,

Qi
c(k) =

2
64
0:5 0 0

0 0:5 0

0 0 0:5

3
75 Ri

c(k) =

2
64
0:7 0 0

0 0:7 0

0 0 0:7

3
75 (i = 1; 2; 3; 4)

After 10 iterations in the simulation of the calculation process, a perturbation occurs such that the

matrix Fi
c for each channel is changed to the transpose [Fi

c]
T , thus yielding an incorrect calculation.
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Detecting that a perturbation has occurred using Kalman �ltering, statistical decision theory, and

data fusion is desired.

The Kalman �lters are implemented in Prediction-Correction Form (ref. 5) and estimate the

calculated command vector of each processor. Thus, for a predicted state estimate,

bxic(kjk�1) = Fi
c(k) bxc(k�1jk�1) +Gi

c(k) z
i

in
(k) (15)

the predicted error covariance is

Pi
c(kjk�1) = Fi

c(k)P
i
c(k�1jk�1) [Fi

c(k)]
T + �ic(k) Q

i
c(k) [�

i
c(k)]

T (16)

The �lter gain is

Ki
c(k) = Pi

c(kjk�1) [Hi
c(k)]

T fHi
c(k) P

i
c(kjk�1) [Hi

c(k)]
T + Ri

c(k)g
�1 (17)

For the updated state estimate,

bxic(kjk) = bxic(kjk�1) +Ki
c(k)[z

i
c(k) �Hi

c(k) bx
i
c(kjk�1)] (18)

the updated error covariance is

Pi
c(kjk) = [I�Ki

c(k) H
i
c(k)] P

i
c(kjk�1) (19)

The state estimation errors for each of the four Kalman �lters are shown in �gure 7. Note that once

the Kalman �lters have reached steady state, the estimation errors are 0 until the state transition

matrices are changed at 10 iterations.
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Figure 7. State estimation errors for the four Kalman �lters of the example.
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The residual for each channel is the absolute value of the innovations sequence, which is the

bracketed term in equation (18). Thus, the residual vector is given by

r
i
c(k) = [ricj ] = jzic(k)�H

i
c(k) bx

i
c(kjk � 1)j (j = 1; 2; 3) (20)

The innovations sequence is a white random sequence whose mean (�ic) is 0 if the calculations are

correct. A Bayesian decision rule (ref. 6) will be used in this example for each calculation of each

channel. The hypotheses for the decision rule for the jth calculation of the ith processor are given

by

H1icj : r
i
cj
(k) = �icj + vicj(k) ! Incorrect calculation (Mean = �icj 6= 0)

H0icj : r
i
cj
(k) = vicj(k) ! Correct calculation (Mean = �icj = 0)

9=
; (21)

For this example, the a priori probabilities for these hypotheses are 0.5. The decision rule for the

Gaussian case assuming unity variance is given by

ricj

H1
i
cj

�

<
H0icj

+
�icj

2
+

1

�icj
ln

(
P (H0cj)[C10cj � C00cj]

[1� P (H0cj)][C01cj �C11cj]

)
(22)

The left-hand side of equation (22) is the residual given in equation (20), and the right-hand side

of equation (22) is the threshold for the decision process. The threshold is dependent on the mean

of the residual, the a priori probabilities of the hypotheses given in equations (21), and the costs

associated with the decision process. The term C��cj is the cost of deciding, for the jth calculation,

that � is true when � is actually true. If the residual is less than the threshold, then hypothesis

H0icj of equations (21) is accepted and the calculation is considered correct. Otherwise, hypothesis

H1icj is accepted and the calculation is considered incorrect. For this example, the costs of making

a correct decision (i.e., � = �) are all 0, and the costs of making an incorrect decision (i.e., � 6= �)

are all 0.5. The performance of the Bayesian detectors for each channel, in terms of the probability

of false alarm and the probability of miss, is given, respectively, by

Pfaicj = P (D1icj jH0icj) =
1
p
2�

Z
1

�icj

e
�(ricj

)2=2
dricj (23)

and

Pmi
cj

= P (D0icjjH1icj) =
1
p
2�

Z �icj

�1

e
�(ricj

��i
cj
)2=2

dricj (24)

For this example, the residuals are the innovations sequence de�ned in equation (20), and the

means �icj are unity. The integral limit �icj is de�ned to be the threshold given as the right-hand

side of equation (22).

The error decisions for the three calculations of the state vector from processor 1 are shown in

�gure 8. In these plots, a value of 0 means that the decision process had not yet begun because

the Kalman �lters were being initiali zed. A value of �1 indicates that the calculation is correct,

and a value of +1 indicates that the calculation is incorrect. For each calculation, all residuals

were larger than the thresholds after 10 iterations, and thus the three calculations were considered

incorrect. This decision is reected in each of the three plots by the transition from �1 to +1. The

error decision plots for the calculations of processors 2, 3, and 4 are analogous to �gure 8. The

probabilities of a missed detection and false alarm for the local decisions of each processor are 0.3083

and 0.0665, respectively.
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Figure 8. Error decisions for each calculation of the state vector from processor 1.

The fusion hypotheses for each processor are given by

H1i
c
: Incorrect command calculations of ith processor

H0ic : Correct command calculations of ith processor

The a priori probabilities for these hypotheses are 0.5 for this example. The fusion rule (ref. 7) for

the local decisions from each processor is given by

di
c
(k) = f [di

cj
(k)] =

8><
>:

1 ! H1ic (a0
i

c +
nP
j=1

aicj d
i
cj
(k) > 0)

�1 ! H0i
c

(otherwise)

9>=
>; (25)

where

d
i

c
(k) = [di

cj
(k)] a0

i

c
= ln

P (H1ic)

P (H0i
c
)

ai
cj

=

8>>>><
>>>>:

ln
1 � Pm

i
cj

Pfa
i
cj

(di
cj
(k) = 1)

ln
1 � Pfa

i
cj

Pm
i
cj

(dicj(k) = �1)

The optimal fusion rule of reference 7 shown in equation (25) is a weighted sum of the local

decisions for each processor. The weights are based on the performance of the local detectors.

The performance of this fusion process for each processor , assuming equal local noise covariances,

was given in reference 4 to be

PF i

c
=

3X
j=0

�
3

j

�
(Pfai

c
)j(1� Pfai

c
)3�j u[A0

i

c
+ ai

c
(2j � 3)] (26)
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PM i
c =

3X
j=0

�
3

j

�
(1� Pmi

c)
j(Pmi

c)
3�j u[A0

i

c + aic(3� 2j)] (27)

where

A0
i

c = ln
P (H1ic)

P (H0ic)
+

3

2
ln

Pmi
c(1� Pm

i
c)

Pfaic(1� Pfa
i
c)

aic =
3

2

"
ln

1� Pmi
c

Pfaic
+ ln

1� Pfaic
Pmi

c

#

with

u[�] = Unit step function Pmi
c = Pmi

c1
= Pmi

c2
= Pmi

c3
Pfaic = Pfaic1 = Pfaic2 = Pfaic3

The fused error decision for the calculations of processor 1 is shown in �gure 9. Note that �gure 9

shows the plot of the error decision that results from the fusion of the three error decisions for

the calculations of processor 1, as shown in �gure 8. The fused error decision of �gure 9 indicates

the decision that the calculations of processor 1 are incorrect after iteration 10. The fused error

decisions for the calculations of processors 2{4 were essentially identical to those of processor 1

shown in �gure 9. The probabilities of a missed detection and false alarm for the fused decisions of

each processor are 0.2265 and 0.0127, respectively.
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Figure 9. Fused error decision for local error decisions for processor 1.

The hypotheses for the fused decision process for global command calculations are given by

H1c : Incorrect calculation

H0c : Correct calculation

9=
; (28)
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For this example, the a priori probabilities for these hypotheses are 0.5. The fused decision process

for global command calculations is given by the same algorithm of reference 7 and is

dc(k) = f [dic(k)] =

8><
>:

1 ! H1c (a0c +
4P
i=1

aic d
i
c(k) > 0)

�1 ! H0c (otherwise)

9>=
>; (29)

where

a0c = ln
P (H1c)

P (H0c)
aic =

8><
>:

ln
1 � PM

i
c

PF i
c

(dic(k) = 1)

ln
1 � PF

i
c

PM i
c

(dic(k) = �1)

The performance of this global fusion process is given by

PFc =

4X
i=1

�
4

i

�
(PF ic)

i(1� PF ic)
4�iu[A0c + ac(2i� 4)] (30)

PMc =

4X
i=1

�
4

1

�
(1� PM i

c)
i(PM i

c)
4�iu[A0c + ac(4� 2i)] (31)

where

A0c = ln
P (H1c)

P (H0c)
+ 2 ln

PMc(1� PMc)

PFc(1� PFc)
ac = 2

�
ln

(1� PMc)

PFc
+ ln

(1� PFc)

PMc

�

with

u[�] = Unit step function PMc = PM1

c = PM2

c = PM3

c = PM4

c PFc = PF 1

c = PF 2

c = PF 3

c = PF 4

c

The global error decision that results from the fusion of the error decisions for processors 1 {4 is

shown in �gure 10. The plot indicates that after 10 iterations, calculations made by the four -channel

system are considered incorrect. The global probabilities of a missed detection and false alarm are

0.2228 and 0.000948, respectively.

-1.0

0

.5

0 5 10 15 20
Iteration

-1.5

-.5

1.0

1.5

dc(k) =  0 (before decision process)

dc(k) =  -1 (correct calculation)

dc(k) =  +1 (incorrect calculation)

dc(k)

Figure 10. Global error decision for calculations in a four-channel system.
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Concluding Remarks

A strategy has been presented for dynamically monitoring digital controllers in the laboratory

for susceptibility to electromagnetic disturbances . In particular, this paper discusses the use of

Kalman �ltering, data fusion, and decision theory in monitoring a given digital controller for control

calculation errors. In this strategy, the control laws calculated in the digital controller were modeled

as linear (or linearized) recursive state equations. This model was used in the design of Kalman �lters

that estimate the correct control calculations. The estimates of the correct control calculations were

compared with the calculations obtained by the control computer. Residuals were then generated

and used in probabilistic decision rules to determine if the calculations performed by the control

unit were faulty. A decision was made for the command calculation of each control loop and these

local decisions were weighted and fused into an integrity decision for control calculations by using

an optimal fusion rule.

An example of this process was presented which can be used as a baseline design for future work.

Future work includes an analysis of the baseline design for detection sensitivity to changes in matrix

parameter values. Designs of the statistical decision rules, data fusion algorithms, and Kalman �lter

gains can be performed to optimize trade-o�s such as sensitivity and diagnostic capability versus

complexity, reliable detection without false alarms, and sensitivity to erroneous parameter changes

with robustness to modeling errors.

NASA Langley Research Center

Hampton, VA 23681-0001

August 26, 1992
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